The Economics of Biochar Carbon Sequestration in Massachusetts

David Timmons, Ph.D.; Ariana Lema-Driscoll, MA; and Gazi Uddin, MA

University of Massachusetts Boston

Potential Benefits of Massachusetts Biochar Production

- Improve crop yields
- Produce renewable energy
- Sequester carbon

Research Questions:

- How much does it cost to produce biochar?
- What is the value of increased crop yields?
- What is the value of energy produced?
- What quantity of biochar can be produced in Massachusetts?
- How much biochar could be applied in Massachusetts?
- What is the net cost of sequestering carbon using biochar?

Economic Analysis: Method

Biochar sequestration
$$cost = \frac{(K\alpha + C)}{\Delta CO_2} - B_a - B_c$$

K is the capital cost for a biochar system;

C is operating cost for a biochar system, including labor, biomass feedstock, etc;

 ΔCO_2 is the change in atmospheric CO₂, which equals the amount of CO₂ sequestered;

 B_a is the biochar benefit in agricultural use;

B_c is the benefit of biochar coproducts: pyroligneous acid, thermal energy, electricity, etc:

and α is a capital recovery factor:

$$\alpha = \frac{r(1+r)^T}{(1+r)^T - 1}$$

where:

r is an annual discount rate; and *T* is the number of years the capital investment is expected to last.

Potential Agricultural Benefits of Biochar

- Liming agent
- Phosphorous and potassium additions
- **Nutrient retention**
- Water retention
- Increased microbial activity

- **Slow Pyrolysis**
- More biochar
- More porous structure
- **Increased CEC**
- **Byproduct:** pyroligneous acid

Also differences based on:

- **Application practices**
- **Biomass feedstock**
- Soil characteristics
- Years since initial application

Fast Pyrolysis

- More energy
- **Byproduct: bio-oil**
- More stable carbon

Estimate of Biochar Agricultural Value in Massachusetts

Biochar metastudy result: 10% yield increase (Jeffery et al. 2011)

Massachusetts evidence: Much anecdotal

Little in controlled studies

Assumed biochar application rate: 18 tons/acre

Massachusetts relevant agricultural production value: \$117 M (USDA, 2014)

First-year value: \$11 M

Years of benefit: 25

Discount rate: 6%

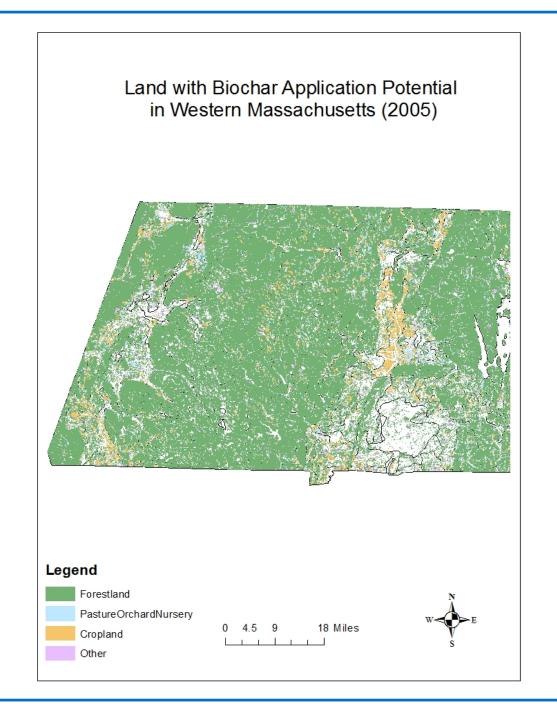
Present value of increases: \$150 M

Average value of biochar: \$56.76/ton applied

Massachusetts Biochar Potential

Best candidate land:

- tilled cropland
- acid soil
- poor soil nutrients
- excessive drainage


Possible demand and supply:

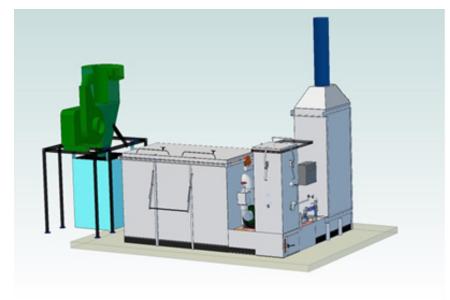
Using 18 tons/acre: 3.8 M tons

Production: 0.27 M tons/year

Carbon sequestration: ≈1% of

current emissions

Production Method: Easthampton, MA CharCone



Production Method: New England Biochar

Eastham, MA

Production Method: Amherst, MA NextChar

Production Method: Ashfield, MA Roberts Energy Renewables

Results: Cost of Carbon Sequestration

CharCone: \$83/Mg CO₂

NE Biochar: \$92/Mg CO₂

Modified boiler: \$114/Mg CO₂

NextChar: \$82/Mg CO₂

Roberts/Biogen: \$119/Mg CO₂

Table 6-1. Cost Carbon Seques	stration w			ilusells Cas	se Studies
		New	Modified		
		England	biomass	NextChar	Biogen
	Char-	Biochar	electric	CHAB	G1300
	cone	retort	plant	processor	gasifier
Plant size (input Mg/day, 40% MC)	0.06	9	367	101	63
hours per day	3.5	24	24	24	24
days per year	75	330	330	330	336
Biomass Mg/year @ 40% MC	4.1	2,831	121,208	33,333	21,000
Biomass Mg/year, dry weight	2.5	1,699	66,664	20,000	12,600
		.,			,
Plant capital cost	\$549	\$558,000	\$3,152,908	\$3,500,000	\$7.800.000
plant life, years	20	20	20	20	20
average return on capital	10%	10%	10%	10%	10%
Annualized capital cost	\$64	\$65,542	\$370,339	\$411,109	\$916,185
Armualized capital cost	V 04	Ψ00,042	ψ310,338	ψ 4 11,103	ψ310,103
Biomass fuel costs					
biomass input @ 40% MC	4.1	2,831	7,362	33,333	21,000
biomass price/Mg. 40% MC	4.1	\$(28)	\$25	\$25	\$25
Total biomass fuel cost per year	_	\$(79,279)	\$184.055	\$833.333	\$525,000
Total biomass fuel cost per year	-	Φ(19,219)	\$104,000	\$000,000	\$525,000
Diant annual operating costs					
Plant annual operating costs		\$150,000		402 200	£402.200
labor cost	0.00/	+	- - -	482,380	\$482,380
maintenance, % of capital cost	0.0%	5.0%	5.0%	5.0%	5.5%
annual maintenance cost	-	\$27,900	\$157,645	\$175,000	\$430,000
utilities, supplies, and other costs	\$80	\$31,100		-	-
Total plant operating cost	\$80	\$209,000	\$157,645	\$657,380	\$912,380
Total annual cost	\$144	\$195,263	\$712,040	\$1,901,822	\$2,353,565
Total allitual cost	Ψ1 44	φ195,205	Φ1 12,040	φ1,901,022	φ2,333,303
Electricity production, MWh	-	_	not included	-	16,128
Electricity value. \$/MWh	_	_	not included	_	\$85
Total electricity value per year	-	-	_	-	\$1,370,880
Total electricity value per year					\$1,570,000
Heat production per hour, MMBtu	-	1.50	_	18.00	10.00
Heat utilization rate	_	50%	_	50%	75%
Net utilized heat, MMBtu/hour		0.75		9.00	7.50
Heat value, \$/MMBtu	_	\$9.01		\$9.01	\$9.01
Total heat value per year	-	53,668	_	642.082	544.797
Total fleat value per year	_	33,000	-	042,002	344,191
Net annual cost	\$144	\$141,595	\$712,040	\$1,259,740	\$437.888
Net annual cost	Ψ144	Ψ141,333	Ψ112,040	ψ1,233,740	Ψ437,000
Biochar yield, percent dry weight	22%	30%	3%	25%	10%
Annual biochar production, tons	0.54	510	2,133	5,000	1,260
	\$268	\$278	\$334	\$252	
Biochar production cost per ton	⊅ 208				\$348
Biochar distribution cost per ton	\$57	\$14 \$57	\$14 \$57	\$14 \$57	\$14 \$57
Biochar ag value per ton		+		+- .	
Net cost biochar per ton	\$211	\$235	\$291	\$209	\$304
Biochar carbon content	79%	79%	79%	79%	79%
Recalcitrant carbon portion	97%	97%	97%	97%	97%
Carbon sequestered per Mg biochar	77%	77%	77%	77%	77%
Cest of sequestration per Mg C	\$303	\$337	\$418	\$300	\$137
Cost of sequestration/Mg CO ₂	\$83	\$92	\$114	\$82	\$119


Minimizing Cost of a Fully Renewable Energy System

Energy options:

- solar photovoltaic
- wind power
- hydropower, run-of-river
- pumped hydro energy storage
- biomass/biochar?

