Green Building and Retrofit Planning for Urban Revitalization and Redevelopment

Benjamin S. Weil Extension Assistant Professor Building Energy University of Massachusetts, Amherst

Unique places

- Municipal goals
- Requirements from higher levels of government
- Historical development
- Unique combination of resources and opportunities

Principles

- Design with the climate.
- Use local and existing natural resources where possible.
- Protect and preserve aesthetically, historically, and architecturally valuable aspects of buildings while avoiding compromises that fail to sufficiently upgrade building performance or that could lead to future degradation of the building.
- Provide for a high level of indoor environmental quality.
- Use building systems and materials that minimize life-cycle carbon dioxide equivalent emissions.
- Identify and encourage no-regrets investments.
- Make maximum—and creative—use of existing structures and infrastructures.

Holyoke

Municipal goals

Redevelop Center City and Innovation District while moving toward 100% renewable Energy

Requirements from higher levels of government

Implement Renewable Energy Development Funds

Historical development

Mill town, Gateway City, Municipal Utility

Unique combination of resources and opportunities

Canals, HG&E, proximity to R1 Univ., Springfield, Connecticut River, large existing buildings

HG&E 2015 Electric Power Mix

Holyoke *Gas* & Electric

Holyoke Center City and Innovation District

21,456,623 sf developable

Code compliant redevelopment of 21 Million sqft existing mill buildings in Innovation District

МWh

Natural gas peaks for heating

Order of Priorities

- Favor systems that can be powered by renewable energy. In practice this means favoring electrically driven systems over on-site fuel combustion.
- 2. Design for peak shaving and off-peak electric use.
- 3. Use natural forces to supply space conditioning, comfort, indoor health, and lighting.
- 4. Optimize systems for overall energy efficiency.

Principles

- Design with the climate.
- Use local and existing natural resources where possible.
- Protect and preserve aesthetically, historically, and architecturally valuable aspects of buildings while avoiding compromises that fail to sufficiently upgrade building performance or that could lead to future degradation of the building.
- Provide for a high level of indoor environmental quality.
- Use building systems and materials that minimize life-cycle carbon dioxide equivalent emissions.
- Identify and encourage no-regrets investments.
- Make maximum—and creative—use of existing structures and infrastructures.

Office

Address: 532 Main Street

South west view

Office

Holyoke Climate

Daily High and Low Temperature

Thermal Mass and Night Flush Cooling

Trombe Wall Façade Rendering

Baseline vs. Advanced Option (Std. HVAC)

Air Source VRF. High COP but decline with outdoor temperature

Figure 5. Fujitsu 12RLS steady-state heating COP (70°F return temperature)

heating capacity declines with Low temp reservoir temperature

Figure 3. Fujitsu 12RLS steady-state heating capacities (70°F return temperature)

Buildings In Innovation District <50 m from canal

Air and Canal Water Temperatures

Benefit of low temperature emitters

Hydronic Low Temp Radiant Emitters

Radiant cooling offers savings too

Kim (2015) ASHRAE Journal

Baseline, vs. conventional HVAC advanced envelope, vs. canal heat exchange

Option 13 envelope, economizer, night flush, canal heat exchange

Wind speeds in Holyoke

smoke stacks

Stack effect generated ventilation potential

Image generated with Residential Energy Dynamics, 2016

Option 13 envelope, economizer, night flush, canal heat exchange, stack vent

Historical Commission

- Design waivers
- Pre-approved designs
- Clarity about acceptable exteriors
- Definition of "visible from a public way"

recessed windows with vertical fin solar defense for Northwest facing windows.

Trombe Wall Façade Rendering

Exterior Insulation and new claddings

Thanks

- Marcos Marrero
- Sarah LaRose
- Jim Lavalle

Providing Market Education and Design Resources for Wood Construction

Resources For You

- **Education Events** •
- **Design Tools**
- **Case Studies**
- Help Desk ۲

	Upcoming Events
WoodWorks	Contact Us
Woodworks provides education, resources and technical support related to the design of the non-residential and multi-family wood buildings.	
Technical Support	Carbon footprint
Events	Wood products continue to store
Design Tools	growing cycle, keeping it out of the
Design with Wood	atmosphere.
Why Wood?	
US Wood Design Awards	
Education & Publications	
About WoodWorks	
Google" Custom Search	

www.woodworks.org

Project Support and Technical Assistance

- Schools
- Mid-rise/multi-family
- Commercial
- Corporate
- Franchise
- Retail
- Institutional
- Recreational
- Healthcare

Why Wood?

Wood Costs Less

Wood Meets Code

Wood is Durable

Wood is Renewable

Using Wood Helps Reduce Your Environmental Impact Wood Products Play a Significant Role in Modern Economy

Energy Performance

*Normalized Comparison

Source: Thermal Performance of Light framed Systems, CWC

US Forest Land

Forest **Area** in the United States 1630-2007

Source: USDA-Forest Service, General Technical Report WO-78. (2009).

US Forest Land

US Timber Volume on Timber Land

Source: USDA-Forest Service, US Forest Resource Facts and Historical Trends FS-801. (2004).

US Contributes Highly to World Emissions

Per Capita CO, Emissions and Per Capita GDP for the Top Ten Total Emitters and Top Ten Per Capita Emitters, 2006

Data Source & Notes: WRI, CAIT (2009). Qatar GDP per capita estimate is for 2005; all other data presented are for 2006.

Sustainable Forestry Carbon Cycle

as they decay or rapidly through wildfire

LCA of Materials: Carbon Emissions

	USEPA (2006)	USEPA (2006)
Material	Process Emissions (kg CO ₂ e/ kg of product)	Process Emissions Including Carbon Storage within Material (kg CO ₂ e/ kg of product)
Framing lumber	0.12*	(-1.68
Concrete	0.12	0.12
Concrete block	0.14	0.14
Brick	0.32	0.32
Medium density fiberboard (MDF)	0.32	(-1.47)
Recycled steel (avg recy content)	0.81	0.81
Glass (not including primary mfg.)	0.57	0.57
Cement (Portland, masonry)	0.97	0.97
Recycled aluminum (100% recycled content)	1.13	1.13
Vinyl		1.00
Steel (virgin)	2.55	2.55
Aluminum (virgin)	16.60	16.60

Carbon content of 49% assumed for wood. (measured values range from about 47-52%)

Mass timber products **Nail-Laminated Timber** horizontal framing **Cross-Laminated Timber** (NLT) (CLT) Glue-Laminated Timber (GLT) Tongue & groove Timber concrete composite decking (T&G) Structural composite Lumber Image source: structurecraft

Mass timber products

glulam

Glulam = a structural composite of lumber and adhesives

- Recognized in IBC 2303.1.3 using ANSI/AITC A 190.1 and ASTM D 3737
- Can be used for floor, roof purlins, beams, arches, columns

Solid Timber Panel Products

Considerations:

Requires accommodation for dimensional change Need wood structural panel for diaphragm capacity Recognized as a heavy timber floor system

0

Long history of use

Nail Laminated Timber

Graphic Credit: StructureCraft

Solid Timber Panel Products

Cross Laminated Timber

Considerations:

- Span usually governed by vibrations
- Dimensionally stable
- Recognized by 2015 codes and standards
- High in plane shear capacity
- Dual Directional span capabilities

UMASS Integrated Building Design Image: UMASS Building and Construction Technology

Carbon Reduction

Volume of wood used	950 m ³
Carbon sequestered and	
stored (CO ₂ e)	660 metric tons
Avoided greenhouse gases	
(CO ₂ e)	225 metric tons
Total potential carbon benefit	
(CO ₂ e)	915 metric tons

Carbon savings from the choice of wood in this one building are equivalent to:

175 passenger vehicles off the

road for a year

Enough energy to operate a home for 79 years

Stadhaus, London, UK

Architect: Waugh Thistleton Architects Photo credit: Waugh Thistleton Architects

Government Support

- "Building stronger markets for innovative wood products will
 - support sustainable forestry,
 - reduce green house gas emissions, and
- put rural America at the forefront of an emerging industry"
 - Tom Vilsack Agriculture Secretary